Long read sequencing

The good, the bad, and the really cool.

A/Prof Torsten Seemann

Melbourne, Australia

Microbial genomics

Applied Microbial Genomics

Why do we need long reads?

Repeats

Long reads can span repeats

Long reads untangle graphs

Completed genomes

Heterozygosity

Phased haplotypes

Maternal ATGCTACGATCGCTCG

Paternal ATGGTACGATCGATCG

Unphased: ATG TACGATCG TCG

A few phasing possibilities

Maternal ATGCTACGATCGCTCG Maternal ATGCTACGATCGATCG

Paternal ATGCTACGATCGATCG

Paternal ATGCTACGATCGCTCG

Maternal ATGCTACGATCGATCG

Paternal ATGCTACGATCGCTCG

Paternal ATGCTACGATCGATCG

Paternal ATGCTACGATCGATCG

Structural variation

The missing heritability - not just SNPs

Insertion	A	В	C	Q	D	E
Duplication	A	В	C	D	D'	E
Inversion	A	D	C	В	E	
Translocation	A	В	C	X	E	F
	U	V	W	D	Y	Z

Long read technologies

Two flavours

- :: Synthetic long reads
 - : Still needs an Illumina short-read sequencer
 - : Molecular biology tricks + local assembly / constraints
 - : Illumina SLR, 10X Genomics, Dovetail
- :: Genuine long reads
 - : The real deal no tricks!
 - : Pacific Biosciences, Oxford Nanopore

Illumina SLR

"Moleculo" synthetic long reads

Synthetic long reads

- 1. Genomic DNA
- 2. Shear ~10 kbp fragments
- 3. Dilute ~500 fragments per well
- 4. Amplify
- 5. Shear to ~ 500 bp fragments
- 6. Barcode (384)
- 7. Short read sequencing
- 8. De-barcode into pools
- 9. De novo assemble each pool
- 10. Get ~500 x 10 kbp "long reads"

Illumina SLR - "reads"

Pacific Biosciences

It's already here and it works.

Pacific Biosciences RSII

* not included

Pacific Biosciences RSII

Installed June 2015 at Doherty Institute

Just started running!

PacBio: technology

∷ Polymerase bound to bottom of ZMW µ-well

Incorporation of fluorescent nucleotides measured in real time

∴ 3 hour "movies"

Pacbio: reads

PacBio: our first two SMRT cells

Yield: 2.3 Gbp **No. reads:** 275,906 **Mean length:** 8387 bp **N50 length:** 11782 bp

PacBio: error rate

Single read: 86%

30x Consensus: 99.999%

PacBio: main applications

- :: Finished genomes
- :: Full length cDNA (mRNA isoforms)
- :: Extreme GC sequence
- :: HLA / MHC / KIR haplotyping
- :: Base modifications (methylation)

human chromosome 6

PacBio: bioinformatics

- :: All in GitHub
- :: SMRT Portal
 - : Nice GUI
 - : Cloud ready
 - : Linux backend
 - : Cluster ready
- :: Cmdline tools
- Good docs

Oxford Nanopore

The new kid on the block.

MinION - the device

PromethION - large scale device

:: 48 independent flow cells

:: On board ASIC

:: Optional compute

Nanopore - technology

Signal is measured from <u>5 bases</u>

Timing is irregular

Base modifications do alter the signal

Nanopore - reads

Nanopore - read lengths

Read length is not limited by technology but by library preparation.

Can get >100kbp reads.

But not trivial to do so!

Nanopore - error rate

Percent identity (aligned)

- ∴ 5-mer errors
- :: Homopolymer issues
- Not modelling base mods yet
- :: Changes with pore & motor enzyme

MinION - applications

:: Same as PacBio plus....

- :: Portable sequencing
 - : in the field eg. Josh Quick in Guinea for Ebola
 - : in hospitals infection control
 - : monitoring water/food supply, production facilities
 - : at the GP pathogen test in 10 min from blood prick?
 - : spit in a home device every morning?

Disruptive technology

Or just another sequencer?

"Run until"

Dynamically adjust sequencing yield

"Read until"

- :: Can access events/bases during reading
 - : remember reads are long 40 kbp
 - : examine first 100 bp say (40 bp/sec currently)
 - : can decide to stop reading and eject molecule!
- :: This is a killer app!
 - : only want pathogens? eject if human DNA
 - : only want exome? eject if not exonic looking
 - : controlled with Python code

"Fast mode"

- :: 2015 / MkI
 - : enzyme deliberately slowed down ASIC can't keep up!
 - : ~40 bases / sec / channel
 - : 40 bp x 24 h x 512 channels ~ 2 Gbp
- :: 2016 / MkII
 - : new ASIC with ~3000 channels x 500 bp / sec
 - : 500 bp x 1 week x 3000 channels ~ 900 Gbp
- :: PromethION
 - : has 48 flow cells . . . ~ 400 Tbp / week !?!

VolTRAX - library prep

A new business model

- :: No capital or reagent costs
 - : Instrument will be free
 - : Flow cells will be <u>free</u>
 - : Only pay for what you want to sequence
 - : Min. \$20 and ~\$1000 for a 100x human genome
- :: But I'll scam the system!
 - : Flowcell stats sent back to base
 - : Won't send you new flow cells if they look unused

How will bioinformatics change?

Some things never change

- ∷ Don't worry!
 - : 50% of our job will always be converting file formats 😊
- :: HDF5 Hierarchial Data Format
 - : groups, multi-dimensional, indexed, random access
 - : Pacbio and Nanopore produce .h5 files
- :: Can extract FASTQ from HDF5 easily

New work patterns

- :: Less aligning to reference, more *de novo*
- :: Learning to work with haplotypes
- :: More graph-based methods
- :: Complex structural variant information: VCF4.2
- :: Smaller data files?

Read alignment

- :: Reads are 15% error, mainly indels
- □ PacBio
 - : BLASR, Daligner, MHAP
 - : BWA MEM: bwa mem -x pacbio
- :: Nanopore
 - : BWA MEM: bwa mem -x ont
 - : MarginAlign sum over possible alignments

De novo assembly

:: Pacbio

- : Very modular system: Overlap, Layout, Consensus
- : Polylploid aware assembly possible (Falcon)

:: MinION

- : Higher error rate, but rapid community development
- : NanoCorrect + Celera Assembler + NanoPolish

:: For existing assemblies

: Gap-filling, scaffolding/breaking, hybrid assembly

Streaming analysis

- :: We are not going to keep all this data
 - : Need to think *streaming analyses*
- :: Extract info we need and discard
 - : Cheaper to resequence?
- :: Lots of new applications
 - : Much scope for method development
 - : Even more scope for biological discovery

Conclusion

Exciting times!

- :: Genomics is changing all the time
 - : but science will press on

- :: Pipelines are often short lived
 - : except maybe clinical / accredited ones

- :: Bioinformaticians need to be able to adapt
 - : focus on key skills not specific apps

Acknowledgments

Doherty Institute

:: Tim Stinear

∷ Ben Howden

VLSCI

∴ Andrew Lonie

:: Helen Gardiner

:: Dieter Bulach

:: Simon Gladman

Twitter/Blogs

:: Nick Loman

:: Lex Nederbragt

:: Keith Robison

:: C. Titus Brown

Oxford Nanopore

∷ Clive Brown

:: Gordon Sanghera

Millennium Science

:: Paul Lacaze

:: Matthew Frazer

:: Rubber Chicken

Pacific Biosciences

:: Siddarth Singh

:: Jason Chin

∷ Stephen Turner

Contact

http://tseemann.github.io tseemann@unimelb.edu.au @torstenseemann

The End

Thank you for listening.